CMAC

Robotic-Assisted NIR Spectroscopy for Optimised Calibration of Chemometric Models and Enhanced Predictive Power for Blend Homogeneity

Alexandros Tsioutsios^{1,2}, Mohammad Salehian^{1,2}, Faisal Abbas^{1,2}, Blair Johnston^{1,2}, Daniel Markl^{1,2} ¹Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC) ²Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde

8.07

Background

Our research focuses on autonomous microscale manufacturing for the pharmaceutical R&D industry, which enables high-speed, precise, and resource-efficient experiments. This technology accelerates drug development research and reduces costs by providing better control over crucial process parameters for optimal formulation and process enhancement. We strive towards a Quality by Control (QbC) approach for assured product quality, aligning seamlessly with our microscale tableting process to maintain consistency.

Incorporation of Process Analytical Technology (PAT) tools further optimizes our QbC approach. PAT enables real-time process monitoring, thereby enhancing understanding, reliability, and overall quality of pharmaceutical manufacturing.

DM² Autonomous Microscale Manufacturing Platform

Pre-Compaction Workflow

Station 2. In Process Monitoring by NIR Spectroscopy

Effective Sampling Size

Illustration of single central point measurement and variations of multiple measurements

- The analytical center was determined through the production and evaluation of NIR false colour images for different blends.
- The lowest PC1 scores in the images represent the sample area.
- For each blend replicate, the fifteen lowest PC1 scores were extracted.
- The illustrations were produced based on this determined center and the dimensions of the light input aperture.

ပြ

e.g., Random Forest

Using machine learning regression models to predict the NIR spectrum of powder mixtures, considering the % w/w composition of each formulation and the NIR spectra of each component. Aimed for use in the

<u>e.g., PLS</u>

UK Research and Innovation

Acknowledgment: The authors would like to thank the Digital Medicines Manufacturing (DM²) Research Centre (Grant Ref: EP/V062077/1) for funding this work. DM² is co-funded by the Made Smarter Innovation challenge at UK Research and Innovation, and partner organisations from the medicines manufacturing sector. For more information, visit cmac.ac.uk/dm2-home

