CMAC

Discrete Element Model for a Microscale Tablet Development System and Drug Release Prediction

Anas Almudahka^{1,2}, Mohammad Salehian¹, Stefan Pantaleev³, John Robertson¹, Daniel Markl¹

¹ Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC),Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK

² Department of Pharmaceutics, College of Pharmacy, Kuwait University, Kuwait

³Altair Engineering, Edinburgh, UK

Background

- Digital Medicine Manufacturing (DM²) is an integrated, automated tablet manufacturing and testing system (Fig. 1).
- Integration of models with automated processes enables the prediction of • critical quality attributes with several advantages. (Fig. 2).
- Discrete Element Model (DEM) is a modelling tool utilising mathematical • simulations to mimic real-life counterpart of particle movement and interactions and visualise their behaviour.
- Successful implementation of DEM can create digital twins of a desired process and accelerate drug development while improving agility.

Aims & Objectives

Multiple steps are required to achieve desired drug release profile, most importantly calibration of frictional coefficients of DEM particle (Fig 4)

DEM dissolution and disintegration testing

Time

Simulate drug release using

shear cell test DEM input shear cell tests Matching experimental AIF to DEM's parameters Aim: Element Developing Model Discrete for microscale manufacturing system including transportation and compaction

Swelling rate and liquid uptake

Aim:

Developing Discrete Element Model for sessile drop measurement to calibrate swelling and liquid uptake models of tablets

Mathematical model

Setup

Aim:

%

Discrete element model for different formulations

Kuka Robotic Arm

Tablet Storage

DEC Dosing -

blending-dosing Unit

Front View

Vibrator

Sliding Gate

Solenoid

valve

Methods

Figure 5: A summary of Discrete Element Model (DEM)

sensor

- Matched results yield effective parameter outputs to be fed into each step (Fig. 4)

Figure 7: Top-down view of Transportation unit in this work

Preliminary results

- Visualisation of powder behaviour demonstrates accuracy with experimental near-infrared analysis 1% binary blend of paracetamol and lactose done in the lab (Fig. 8).
- DEM can aid in developing understanding of particlelevel behaviors of a micro scale blend with more accurate calibration of the system using established characterisation tools.

Future direction

- Establishing a systematic workflow to calibrating individual raw \bullet materials using lab-based characterisation techniques.
- Conducting automated DoE to extract parameters for further \bullet down-stream simulation of the autonomous development system.
- Identifying ideal simulation boundaries through down-scaling of instruments to reduce computational load (Fig. 9).
- Achieving calibrated bulk extends the exploration to different blends in order to validate braw material properties in different blends

Figure 9: DEM shear cell scaled down to reduce computational burden

Digital Medicines

Figure 8: Preliminary results for binary blend of 1% paracetamol with lactose showing the A) flow of particles, B) resultant near-infrared (NIR) spectroscopy view, and C) the experimental coefficient of variance from real-life raster scan.

Email: Anas-a-y-y-m-almudahka.2021@uni.strath.ac.uk

LinkedIn: https://www.linkedin.com/in/anas-almudahka/

References: Luding, S. (1998). Springer Netherlands: 285-304 Morrissey, J. P. (2013). University of Edinburgh.